Back
Oct 22, 2016

Solr Sharding

When dealing with one of our projects (LookSMI media monitoring platform) we have to handle the huge volume of data – and its quantity is constantly growing. At the same time, we must run quick searches with smart rules. To make this work, the whole index should be placed into RAM.

LookSMI Case: Using Shards for the News Portal

It is obvious that when millions of records are being added to the index regularly, RAM size would never be enough. Eventually, you will have to divide index into several parts in order to run search on several machines simultaneously.

LookSMI is dealing with the news, which means that the portal is heavily working with the new records while almost not using the older ones. LookSMI utilizes Solr as a full-text search engine. To ensure fast search within recent records, we decided to shard LookSMI's index.

Sharding is a type of database partitioning that separates very large databases the into smaller and faster, parts called data shards. The word shard itself means a 'small part of a whole'. Technically, sharding means horizontal partitioning but in practice, the term is often used to refer to any database partitioning that is meant to make a very large database more manageable and easier to search through.

Accordingly, we partitioned LookSMI's search index into shards where each shard corresponds with one month. A limited number of shards are set to be active concurrently – just a few last months. Thus, all data a user needs is housed in RAM.

Whenever there is a need, older shards can be activated to accomplish necessary request – and then deactivated. Moreover, when filtering the search by predefined date, we can engage just a part of active shards so that the search is performed only on those servers where the data for the specified period is located.

Steb-by-step Guide to Arranging Solr Sharding

There are several ways to arrange sharding in Solr. The easiest one is to divide index into a few cores. Hence, when carrying out a search query, Solr should be commanded to perform search throughout several cores simultaneously.

First, you should create cores with the identical structure. This can be easily done with the help of cores’ pattern.

For starters, copy configuration files into the configsets folder:

cp sorl/data//conf solr/data/configsets/conf

Then specify the folder’s name when creating the core:

mkdir solr/data/configsets/
cp solr/data/configsets/conf solr/data/configsets//conf

We have automated the process of creating the cores so that new cores are proactively set up every month:

http:///solr/admin/cores?action=CREATE&name=&instanceDir=path/to/instance&configSet=path/to/instance/`

When the cores are created, revise the code so that data would be added to a specific core while performing a concurrent search over the other cores:

http:///solr/select?q=*:*&shards=http:///solr/,http:///solr/`

Then, revise the code so that data would be recorded to a corresponding core:

http:///solr//update -H

Cores can be located on different servers. Furthermore, they can be arranged not only by time periods but also by categories.

Don’t be afraid to create multiple cores as resource overheads under these conditions are quite small. On the other hand, sharding makes database systems smoothly scalable and helps to deal with the problem of slower response times for growing indexes.

Subscribe for the news and updates

More thoughts
Jul 21, 2022Technology
Codemirror: unit-testing codemirror react components

One of our recent projects includes the functionality of an inline code editor. This code editor needed to be highly extensible and have custom features. To address this, we chose Codemirror v6 due to its peculiar architecture - it is highly customizable, and all the additional features are provided into codemirror engine as Extension objects.

Sep 1, 2021TechnologyBusiness
Top 10 Web Development Frameworks in 2021 - 2022

We have reviewed the top web frameworks for server and client-side development and compared their pros and cons. Find out which one can be a great fit for your next project.

May 10, 2018Technology
How to Build a Cloud-Based Leads Management System for Universities

Lead management is an important part of the marketing strategy of every company of any size. Besides automating various business processes, privately-held organizations should consider implementing an IT solution that would help them manage their leads. So, how should you make a web-based leads management system for a University in order to significantly increase sales?

May 26, 2017Technology
Tutorial: Django User Registration and Authentication

In this beginners friends article I'll explain how to make authentication with Google account on your Django site and how to make authentication for you REST API.

Jan 12, 2017Technology
Making Custom Report Tables Using AngularJS and Django

In this article I will tell you how to create an interactive interface with a widely customized visual look and different filtering to view reports.

Oct 11, 2010Technology
Char search in Emacs as in Vim

In VIM there is a command for char search: f. After first use it can be repeated with ;. I like to navigate in line with it. You see that you need to go to bracket in a middle of a line - you press f( and one-two ; and you are there. There's no such command in Emacs, so I had to write my own. I've managed even to implement repetition with ;.